9 research outputs found

    Mangrove phenology and environmental drivers derived from remote sensing in Southern Thailand

    Full text link
    © 2019 by the authors. Vegetation phenology is the annual cycle timing of vegetation growth. Mangrove phenology is a vital component to assess mangrove viability and includes start of season (SOS), end of season (EOS), peak of season (POS), and length of season (LOS). Potential environmental drivers include air temperature (Ta), surface temperature (Ts), sea surface temperature (SST), rainfall, sea surface salinity (SSS), and radiation flux (Ra). The Enhanced vegetation index (EVI) was calculated from Moderate Resolution Imaging Spectroradiometer (MODIS, MOD13Q1) data over five study sites between 2003 and 2012. Four of the mangrove study sites were located on the Malay Peninsula on the Andaman Sea and one site located on the Gulf of Thailand. The goals of this study were to characterize phenology patterns across equatorial Thailand Indo-Malay mangrove forests, identify climatic and aquatic drivers of mangrove seasonality, and compare mangrove phenologies with surrounding upland tropical forests. Our results show the seasonality of mangrove growth was distinctly different from the surrounding land-based tropical forests. The mangrove growth season was approximately 8-9 months duration, starting in April to June, peaking in August to October and ending in January to February of the following year. The 10-year trend analysis revealed significant delaying trends in SOS, POS, and EOS for the Andaman Sea sites but only for EOS at the Gulf of Thailand site. The cumulative rainfall is likely to be the main factor driving later mangrove phenologies

    Mangrove Phenology and Water Influences Measured with Digital Repeat Photography

    Full text link
    The intertidal habitat of mangroves is very complex due to the dynamic roles of land and sea drivers. Knowledge of mangrove phenology can help in understanding mangrove growth cycles and their responses to climate and environmental changes. Studies of phenology based on digital repeat photography, or phenocams, have been successful in many terrestrial forests and other ecosystems, however few phenocam studies in mangrove forests showing the influence and interactions of water color and tidal water levels have been performed in sub-tropical and equatorial environments. In this study, we investigated the diurnal and seasonal patterns of an equatorial mangrove forest area at an Andaman Sea site in Phuket province, Southern Thailand, using two phenocams placed at different elevations and with different view orientations, which continuously monitored vegetation and water dynamics from July 2015 to August 2016. The aims of this study were to investigate fine-resolution, in situ mangrove forest phenology and assess the influence and interactions of water color and tidal water levels on the mangrove–water canopy signal. Diurnal and seasonal patterns of red, green, and blue chromatic coordinate (RCC, GCC, and BCC) indices were analyzed over various mangrove forest and water regions of interest (ROI). GCC signals from the water background were found to positively track diurnal water levels, while RCC signals were negatively related with tidal water levels, hence lower water levels yielded higher RCC values, reflecting brownish water colors and increased soil and mud exposure. At seasonal scales, the GCC profiles of the mangrove forest peaked in the dry season and were negatively related with the water level, however the inclusion of the water background signal dampened this relationship. We also detected a strong lunar tidal water periodicity in seasonal GCC values that was not only present in the water background, but was also detected in the mangrove–water canopy and mangrove forest phenology profiles. This suggests significant interactions between mangrove forests and their water backgrounds (color and depth), which may need to be accounted for in upscaling and coupling with satellite-based mangrove monitoring

    Mangrove Phenology and Environmental Drivers Derived from Remote Sensing in Southern Thailand

    Full text link
    Vegetation phenology is the annual cycle timing of vegetation growth. Mangrove phenology is a vital component to assess mangrove viability and includes start of season (SOS), end of season (EOS), peak of season (POS), and length of season (LOS). Potential environmental drivers include air temperature (Ta), surface temperature (Ts), sea surface temperature (SST), rainfall, sea surface salinity (SSS), and radiation flux (Ra). The Enhanced vegetation index (EVI) was calculated from Moderate Resolution Imaging Spectroradiometer (MODIS, MOD13Q1) data over five study sites between 2003 and 2012. Four of the mangrove study sites were located on the Malay Peninsula on the Andaman Sea and one site located on the Gulf of Thailand. The goals of this study were to characterize phenology patterns across equatorial Thailand Indo-Malay mangrove forests, identify climatic and aquatic drivers of mangrove seasonality, and compare mangrove phenologies with surrounding upland tropical forests. Our results show the seasonality of mangrove growth was distinctly different from the surrounding land-based tropical forests. The mangrove growth season was approximately 8–9 months duration, starting in April to June, peaking in August to October and ending in January to February of the following year. The 10-year trend analysis revealed significant delaying trends in SOS, POS, and EOS for the Andaman Sea sites but only for EOS at the Gulf of Thailand site. The cumulative rainfall is likely to be the main factor driving later mangrove phenologies.</jats:p

    An integrated field and remote sensing method for mapping seagrass species, cover, and biomass in Southern Thailand

    Full text link
    © 2016 by the authors. Accurate and up-to-date maps of seagrass biodiversity are important for marine resource management but it is very challenging to test the accuracy of remote sensing techniques for mapping seagrass in coastal waters with variable water turbidity. In this study, Worldview-2 (WV-2) imagery was combined with field sampling to demonstrate the capability of mapping species type, percentage cover, and above-ground biomass of seagrasses in monsoonal southern Thailand. A high accuracy positioning technique, involving the Real Time Kinematic (RTK) Global Navigation Satellite System (GNSS), was used to record field sample data positions and reduce uncertainties in matching locations between satellite and field data sets. Our results showed high accuracy (90.67%) in mapping seagrass distribution and moderate accuracies for mapping percentage cover and species type (73.74% and 75.00%, respectively). Seagrass species type mapping was successfully achieved despite discrimination confusion among Halophila ovalis, Thalassia hemprichii, and Enhalus acoroides species with greater than 50% cover. The green, yellow, and near infrared spectral channels of WV-2 were used to estimate the above-ground biomass using a multiple linear regression model (RMSE of ±10.38 g·DW/m2, R = 0.68). The average total above-ground biomass was 23.95 ± 10.38 g·DW/m2. The seagrass maps produced in this study are an important step towards measuring the attributes of seagrass biodiversity and can be used as inputs to seagrass dynamic models and conservation efforts

    Hyperspectral Applications to Landscape Phenology

    Full text link
    Phenology is the study of annual recurring biological life cycle events and the drivers and controls of their periodicity. Shifts in phenology depict a plant's integrated response to climate and environmental changes and have become an important source of information on how plants are responding to climate change. Satellite data, with its synoptic views, repetitive sampling, and high spectral resolution offer numerous opportunities to advance the study of phenology. Thus far, satellite products have primarily contributed to coarse scale studies of “landscape phenology,” defined as the aggregate seasonal vegetation patterns sensed by satellites. Investigations of hyperspectral vegetation phenology are very limited and have yet to be exploited, yet phenologic life cycle events, such as flowering, leaf onset, and litterfall, can be quite dramatic visually, and will alter canopy optical properties. In this chapter, we review current knowledge of what is known about phenology optical signals at leaf, canopy, and landscape scales; we provide an overview of current and potential hyperspectral applications to assess life cycle events and determine phenophases; and we discuss the challenges and limitations of hyperspectral sensing in phenology applications. Hyperspectral applications covered include species detections based on unique phenology curves; optimal phenophases for species discrimination; and the spatiotemporal duality of phenological data, in which both climate as well as changes in species composition influence phenology. The key challenge is to integrate hyperspectral and finer spatial resolution data into phenology characterizations in order to resolve species phenology mixing. We conclude that hyperspectral data are key to advancing phenology science

    Discrimination and classification of mangrove forests using EO-1 Hyperion data: a case study of Indian Sundarbans

    No full text
    In remote sensing the identification accuracy of mangroves is greatly influenced by terrestrial vegetation. This paper deals with the use of specific vegetation indices for extracting mangrove forests using Earth Observing-1 Hyperion image over a portion of Indian Sundarbans, followed by classification of mangroves into floristic composition classes. Five vegetation indices (three new and two published), namely Mangrove Probability Vegetation Index, Normalized Difference Wetland Vegetation Index, Shortwave Infrared Absorption Index, Normalized Difference Infrared Index and Atmospherically Corrected Vegetation Index were used in decision tree algorithm to develop the mangrove mask. Then, three full-pixel classifiers, namely Minimum Distance, Spectral Angle Mapper and Support Vector Machine (SVM) were evaluated on the data within the mask. SVM performed better than the other two classifiers with an overall precision of 99.08%. The methodology presented here may be applied in different mangrove areas for producing community zonation maps at finer levels
    corecore